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Nonlinear convection in high vertical channels 

By C. NORMAND 
CEN-Saclay, 91 191 Gif-sur-Yvette Cedex, France 
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Application of Landau’s ideas to the theory of weakly nonlinear instabilities shows 
that the amplitude of the unstable modes behaves as the square root of the reduced 
control parameter 8, its critical value being E = 0. When applied to cellular structures 
the theory has been improved by taking into account the slow spatial variations of 
the amplitude and phase of the unstable modes. Until now the case of thermo- 
convective instabilities in high vertical channels has not been studied using this 
approach. In high vertical structures the nonlinear terms disappear in the limit of an 
infinite height, and the supercritical behaviour requires a specific treatment. It differs 
from the standard analysis valid for the case of fluid layers of infinite horizontal 
extent, where the nonlinearities and the finite-size effects are disconnected. In  the 
limit of high aspect ratios (height 9 horizontal extent) we have derived an amplitude 
equation for convective systems where the nonlinear terms contain derivatives at the 
lowest order. As a consequence the amplitude equation cannot be put into a varia- 
tional form and the stability of the stationary solutions cannot be deduced from an 
ordering in decreasing values of a Lyapunov functional. 

1. Introduction 
In laboratory experiments, convection always takes place in closed cavities, but 

most of the theoretical studies deal with the assumption of an infinite extent in at 
least one direction. This simplification leads to two typical situations : convective 
layers of infinite horizontal extent or vertical channels of infinite height. In  both cases 
the temperature gradient is parallel to gravity. The fundamental difference between 
these two cases is apparent when investigating the nonlinear regime. In  infinitely long 
vertical channels we are faced to the problem of how to generate nonlinear terms in 
the Boussinesq equations. For such systems the assumption of an infinite height is 
equivalent to a linearization of the governing equations where the two relevant 
physical quantities remain the vertical component of the convective velocity v, and 
the temperature 6, which are both independent of the vertical coordinate. In the 
following we shall refer to this approximation as the Ostroumov limit (Ostroumov 
1947). Then the convective currents consist of alternatively upward and downward 
flow so that the mass-conservation condition is satisfied. This is quite different to what 
happens in infinitely large horizontal convective layers, where the perturbative 
expansion method (Sorokin 1954; Gorkov 1957; Malkus & Veronis 1958; Schluter, 
Lortz & Busse 1967) has been, among others, a powerful tool for the treatment of 
the nonlinearities . 

In long vertical channels we have studied the nonlinearities due to the presence 
of horizontal boundaries limiting the fluid at the top and the bottom. In $52 and 3 
two cases will be examined: convection between vertical plates of large but finite 
height and the convection in long vertical cylinders with special emphasis given to 
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FIQURE 1. Plane vertical layer. Coordinate axes. 

the case of circular cylinders. For closed cavities it is exceptional to get analytic 
solutions of the linearized equations, and the solution depends on the boundary 
conditions on the lateral and horizontal walls. For instance, in finite right-circular 
cylinders with free horizontal boundary, Catton & Edwards (1970) derived exact 
analytical results, whereas for rigid horizontal boundary only approximate solutions 
are known. When the nonlinear terms are included and whatever the boundary 
conditions are, the equations can only be solved by approximate methods (Charlson 
& Sani 1975; Liang, Vidal & Acrivos 1969). We shall describe in the following an 
alternate analytic approach valid in the weakly nonlinear regime by making use 
of an expansion method having some connection with the theory developed for 
convective flows by Segel(l969) and Newel1 & Whitehead (1969). Before going further 
we must introduce an important parameter A, the aspect ratio of the cell, which is 
the ratio of the height of the cell to its characteristic horizontal length (the radius 
for a cylinder or the gap between parallel vertical plates). When h is large the system 
is divided into an inner region, where the solutions are in first approximation those 
for a system of infinite vertical extent, and two boundary layers a t  the top and the 
bottom, where the horizontal components of the fluid velocity cannot be neglected. 
The solutions in the boundary layers can be considered as corrections to the 
Ostroumov solution, and will be accounted for by a perturbative expansion in powers 
of h- l .  The solution for the whole system results in a matching between the two 
regions. The calculation will be given in detail for two systems: the plane vertical 
layer ($2) and the vertical cylinder ($3). 

2. The plane vertical Iayer 
We consider a vertical gap of width 2R confined between two plates of height h 

and infinite along the horizontal direction y (figure 1). The temperatures a t  the top 
and bottom boundary are held constant and equal to TI and T, with TI < T,. With 
the origin of the Cartesian coordinates Oxyz located in the midheight horizontal plane, 
the temperature of the fluid is 
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where x, v ,  01 and g denote respectively the thermal diffusivity, the kinematic 
viscosity, the thermal expansion coefficient and the acceleration due to gravity. Let 
R be the unit of distance and R2/X the unit of time; the velocity is (XIR) u. With 
these definitions the governing equations reduce to the Oberbeck-Boussinesq 
equations : v-u = 0 ,  (2.1 a )  

=-Vp+Au+Be,  (2.1 b )  

as -+(u-v)e = AB+Rav,, 
at 

(2.1 c )  

where e = (0, 0 ,  l ) , vz  = e -  u, and p is the reduced pressure. The Rayleigh number and 
the Prandtl number are 

V 
, P r = -  

agATR4 
Ra = ~ 

VXh X 

We take the upper and lower boundaries to be rigid and conducting, so that 

u = 8 = 0  on z = f h .  

The boundary conditions on the vertical plates will be given later. The flow of a 
viscous liquid between vertical parallel plates may be described by approximate 
equations of motion which have a simple form. Two kinds of disturbances have been 
discussed in the past. 

(i) Plane motions in which the velocity is vertical and all quantities are independent 
of the coordinate y have been examined by Ostrach (1955) and Yih (1959). 

(ii) The assumption that the component of velocity normal to the vertical plates 
vanishes has been used by Wooding (1960). This model gives a good picture of the 
convective behaviour in a Hele-Shaw cell. 

It can be shown that the most unstable disturbances are of the form (ii). 
Nevertheless the case (i) bears an analogy with the case of a vertical cylinder discussed 
in $3  and has the advantage of allowing entirely analytical calculations. Thus to 
illustrate our method we have chosen to treat this case. 

The incompressibility condition (2.1 a )  is automatically satisfied by introducing the 
stream function d : 

(2.2) 

After elimination of the pressure in (2 .1) ,  one gets 

( 2 . 3 ~ )  

(2.3b) 

Equation (2 .3a)  must be solved together with (2.1 c ) .  To recover the classical results 
of Ostroumov in the limit, h-t 03, it  is appropriate to make the change of variable 
z = hZ and to expand the quantities $, 0 and Ra so that 

( 2 . 4 ~ )  

(2.4b) 

( 2 . 4 ~ )  

$ = $(O) + 6, 
e = e ( o )  + 8, 

Ra = Ra(O) + &, 
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where the superscript 0 refers to quantities relative to the infinite problem, whereas 
the tilde denotes that the corresponding quantity admits an expansion in power of 
A- l .  Similar expansions hold for u, and 8,. After substituting the set of expressions 
(2.4) in ( 2 . 3 ~ )  and (2 . lc ) ,  we collect the terms according to their order in A- l .  The 

(a; - ~ 0 ) )  up = 0, ( 2 . 5 ~ )  lowest order gives 

@ o )  = -a; up). (2.5b) with 

This is precisely the equation for an infinite plane vertical layer. The solutions for 
the odd modes are as follows: 

(a) Conducting lateral boundary : 

vp) = A sin yx, e ( 0 )  = Ay2 sin yx, (2.6) 

&(O) = y4 = ~ 4 ,  
with for the lowest mode 

and A is a constant. 
( b )  Insulating lateral boundary : 

with t h y  = - tg  y ,  and y = 2.365 for the lowest mode. The even modes require a 
special discussion because the flux-closure condition imposes an additional constraint 
on the velocity: 

U J X )  dx = 0. (2.8) L1 
Integrating (2.1 c) with respect to x from - 1 to 1, which reduces it to 

and making use of (2.8), we obtain 

= O  at x = + 1 .  
ae 
ax 
- 

Therefore the solutions of (2.5) are in this case the same for either type of thermal 
boundary condition : 

(2.10) 

with t h y  = tg y ,  and y = 3.927 for the lowest mode. The presence of boundaries at 
the top and bottom of the vertical layers makes a significant difference to this 
statement. However, provided that A+ 00, the form up) = Aw(x) ,  O(O) = AO(x),  
$(O) = A@(x)  may be adapted to the finite problem by allowing A to be a slowly 
varying function of Z as well as time. Then to the second order of perturbation one 
gets 

[a;- RdO)] cZ = (1  + Pr-l) A,  3; W +  Pr-l Nu-  No+ & AW - 3A-2AZz a; W ,  (2.1 1 )  
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N?) = -a,(+, a,-+, a,) a; +, N?) = - a,(+, a,- +z a,) a; +. 
with 

In the foregoing, except for the components of the velocity, v,, vy and v,, the subscript 
denotes derivative with respect to the corresponding variable (i.e. A ,  = aA/aZ).  
Equation (2.1 1 )  is solved provided that its right-hand side is orthogonal to the kernel 
of the homogeneous adjoint operator. Neglecting all the terms of order higher than 
hP2 in ( 2 . 1 1 ) ,  the compatibility condition is expressed as 

(1 +Pr- l )  Il A ,  = 3h-2AZzIl + A  EZ Iz  +h-lAAZ(13 +Pr-l I , ) ,  (2.12) 

where +1 +1  

I ,  = J-, 1@(412 dx, 1, = s_, 44  @(XI dz, (2.13a, b )  

+1 +1 

I3 = -J-, o ( x ) [ q x )  a, o - o(s) a, 01 dx, = - J-l tq2)[@ a p  - a j 3  dz. 

(2.13c,d) 

The two quantities 1; and I ,  are positive whereas I3 and I4 vanish when the odd modes 
are considered and take a finite value for the even modes: 

I 3 = 2 I  4 = a  5y3th3y. (2.14) 

In  this latter case, I3 =I= 0, I4 $; 0, all the terms in equation (2.12) can be made of the 
same order of magnitude in h by an appropriate normalization. Let 

(2.15a, b )  

A+311(13+Pr-' 1 4 ) - 1  h - lA.  ( 2 . 1 5 ~ )  

R?E = 31, Ii1h-2S, t = $I2( 1 +I%-') T ,  

Then instead of (2.12) we get 

AZ,+SA+AA,=A,  ( - 1  < Z < + l )  (2.16) 

A t t+A+AAs  = A, (-r$ < ( <  + S t ) ,  (2.17) or 

where 5 = StZ, A is scaled with 6: and T with El. The derivation of the boundary 
conditions associated with this equation is given in Appendix A. We get the result 
that A = 0 a t  the boundaries. This corresponds to the condition v,  = 0, which is more 
restraining than v,  = 0, since v ,  = O(h- l ) .  All the parameters have been eliminated 
in (2.17). 

We now set A, = 0, and write ( 2 . 1 7 )  in the form of a first-order system: 

A, = B, Bf  = - A ( B +  1 ) .  (2.18a, b )  

Multiplying ( 2 . 1 8 ~ )  by A and (2.18b) by B(B+ l ) - l ,  we obtain after addition and 
integration 

where C is the constant of integration. It follows from the McHarg theorem (1947) 
that the trajectories in the ( A ,  B)-plane are closed curves provided that the boundary 
value of B is less than one. Closed circles are the trajectories of the linear problem 
for which 

$42+B-log (B+ 1 )  = c, 

:(2n+ 1 ) 2  (even solutions), { n2 (odd solutions). 
S = + X  

A numerical solution of (2.18) using a space discretization gives the form of A 
(figure 2 ) .  We see that St > in for a solution to be possible. When 81 is close to !p, 
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E 
FIGURE 2. Numerical solutions of A g + A  +AAS = 0 with A = 0 at 5 = +8f (solutions are 

impossible for & < in). 

n 

u 
FIGURE 3. (a)  and ( b )  schematic representation is the (2, %)-plane of the two lowest vertical modes 
having a constant phase. (c) Representation of a mode-mode coupling between (a)  and (b) .  
(d )  Vertical mode with a non-constant phase. Such patterns in the form of a figure of eight have 
been observed in high-evaporation-rate cooling cells. 

A(5) is sinusoidal and of small amplitude, and as C increases, the maximum of A 
moves to  the left. The non-symmetrical form of A suggests that  the configuration 
of the convective flow results from a mixing between the odd and even eigenmodes 
of the linear problem (figure 3). If one tries to fit the numerical solution by a super- 
position of the two lowest modes, 

A = A,  cos $2 + A,  sin nZ, (2.19) 

then the Galerkin approximation gives 

(2.20) 

It has been checked for 8: = 1.7 and 1.85 that  the maximum value of A given by 
(2.20) is consistent with the corresponding numerical values deduced from figure 2. 

We shall come back now to the case where I3 = I,, = 0 in (2.12), and then the 



Nonlinear convection i n  high vertical channels 229 

nonlinear terms in AA, disappear from the differential equation satisfied by A .  To 
introduce the nonlinearities correctly we shall proceed in a different way, and in 
particular we must drop the condition A = O(A- l )  that we have introduced in ( 2 . 1 5 ~ ) .  
The method consists in expanding C2, 8 and % in powers of h-l : 

(2.21 a )  

(2.21 6 )  

f i2  = v l ' )h - l+v(2 )A-2+  ...) 

8= e w - 1 + m - 2 +  ... , 
N 

Ra = Ra(l)A-' + Ra(2)h-2 + . . . . (2.21 c )  

After substitution of (2 .21a-c)  in (2 .11)  and equating terms of the same order in h-' 
we get to the first order in A-' 

(2.22) [a: - Ra(O)] ~ 2 )  = N(1) + Ra(l)viO), 

where N(l) is the first term in the A-' expansion of the nonlinear terms: 

Pr-' N v - N  e -  - h-lN(') +A-2N(2) + , . . . 
The derivation of the evolution equation for the amplitude of the even modes is 

greatly simplified by considering the case of conducting lateral boundary for which 
via) and @(O) are given by (2 .6 ) .  The stream function qV0) is determined from 

= -a p) 
A 

Y 

The solvability condition for (2 .22)  is 

and takes the value 
$(O) = -(cosyz+l), 

which allows v, = 0 to be satisfied at x = & 1 ,  

(2 .23)  

(2 .24)  

The numerator is proportional to I, and 14, which are null: therefore we conclude 
that Ra(') = 0 and we seek the solution of (2.22) under the form 

vP) = AA,w(l)(x), 
where w(') satisfies 

(2 .25)  

[at - Ra(O)] w(l) = - y2[ 1 + (1 + Pr-l) cos 7x1,  (2 .26)  

whose solution is 

(2 .27)  w(l) = - (1 +a( 1 + Pr-l) y x sin yx + a cos yx + b ch yx), 

where the homogeneous part of the solution depends on two constants a and b. From 
(2 .2 )  we get 

1 

Y2 

1 
(' +pr-') (-yx cos yx+ sin yx) +- (a sin yx+ b sh yx)], (2 .28)  

4Y Y 
and the boundary conditions 

allow us to determine the constants a and b :  

v z = v 2 = 0  at x = & l  

(5 + Pr-') y b = -  (5  + Pr-l) y 
a = l -  

4 t h y  ' 4shy * 
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At the same order in A-l  the temperature is given by 

O(l) = - AA, ( -a( 1 + Pr-l) yx sin yx + (+( 1 - Pr-l) -a)  cos yz + b ch yz + c),  (2.29) 

with 

Collecting now all the terms which are of order A-2 in (2.11), we get 

[a;-Ra(O)] wi2) = (Pr-l+ 1 )  O(O)A, + N@) +Ra(2)wf') -3A 22 a2 xw (O). (2.30) 

and it is the solvability condition for this equation which gives the differential 
equation to be satisfied by the amplitude A .  The nonlinear term in (2.30), 

N(2) = - Pr-1 3 X Z ($g) 3, - $2) 3,) $yk- Z ($g)Og) -$g)@y)), (2.31) 
i+5-1 i+I-1 

$ 9  I-0, 1 t ,I-0,1 

takes the form 

and consequently the equation for A is 

N(2) = A2AZ,N(2, 1)  +AA;N(% 2 ) ,  (2.32) 

A,, + SA +pl A2AZz +p2 AAL = A, ( - 1 < Z < + I ) ,  (2.33) 

where 6 = R U @ ) I ~ ( ~ I ~ ) - ~  and 
+1 +1 

-1 -1 
p1 = (3Il)-l N@* l)O(O) dz, ,u2 = (3Il)-l N ( 2 ~  z ) @ ( 0 )  dz. 

For a conducting lateral boundary the expressions for the pi are 

,ul = b2[5u - 4 -+Pr-l(16 - 15u + 2Pr-l)], 

,u2 = ~ z { 5 u - ~ - P r - 1 [ 4 u + ~ + P r - 1  ($+u)]}, 

with u = y/th y.  

positive, and then (2.33) can be written 
It must be noticed that in the limit Pr+ 00 the coefficients ,ul and ,uz are always 

A, = Acg+A+A2Ag+pAAi (-8; < 6 < Si), (2.34 a) 

where p = pz/pl,  and A is scaled with p;i. 
In  this limit Pr+ 00 the coefficient ,u takes its values in the range 0.1813 < ,u < 0.5 

when x < y < m. In  the opposite limit Pr = 0 the coefficients ,ul and ,uz are both 
negative, with the values 

and (2.33) takes the form 

,u1= --w, r u z  = -b"%+u), 

A, = A g + A - A 2 A g - ~ A A g ,  (2.34 b )  

with ,u = 1 ,uzl/l pl( .  For y = 7c the numerical value of ,u is 6.3. For intermediate values 
of the Prandtl number the coefficients ,ul and ,uz have opposite signs, leading to an 
evolution equation of the type 

A, = A g +  A +  A2Ag-pAAt.  ( 2 . 3 4 ~ )  

For example, the above equation is valid in the range 0.2 < Pr < 3.5, when y = n. 
Equations (2 .34~-c)  give rise to different convective behaviours, which are now 
examined successively. 
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We set A, = 0 and write ( 2 . 3 4 ~ )  in the form of a first-order system: 

(2.35 a)  

(2.35 3 )  

Multiplying ( 2 . 3 5 ~ )  by A/(1 +A2) and (2.353) by B/(1 +yB2) ,  we obtain after 
addition and integration 

log (1  +A2) +-log (1 +@') = Q, (2 .36)  

where Q is the constant of integration. It must be noticed that for some peculiar values 
of p, elliptic integrals are involved in the solution for A([). For p = 1,  solutions exist 
provided that Si = CiE( 1 - l/C), where E is the complete elliptic integral of the first 
kind (in < E < 1) and C =  expQ (1  < C < a). For y = 2 the condition for the 
existence of solutions is St = Ci[2E(rn)-K(rn)] ,  where rn = (C- 1)/2C and K is the 
complete elliptic integral of the second kind. Numerical solutions for p = 0.5 are 
shown on figure 4(a). It has been checked that on the range 0.2 < p < 2 the results 
are not very sensitive to the value of y .  

Equation (2 .34c) ,  which is representative of the intermediate-Prandtl-number case, 
has been solved numerically for a value of y = 0.4,  corresponding to Pr = 1 .  The 
amplitude profiles are shown on figure 4 ( 3 ) .  In  order to compare the results of the 
integration of (2 .34a ,c)  we have drawn on figure 5 the maximum amplitude as a 
function of S for the value y = 0.4 .  

In the limit Pr+O the numerical integration of (2.34b) gives quite different results. 
The condition for solutions to be possible demands that St takes its values between 
pi and in. Since p > 6 we get solutions in the range in < St < pi.  

1 

Y 

We should mention that (2.36) is now replaced by 

where Q < 0. Let C = expQ, with 0 < C < 1. The amplitude profiles for different 
values of C and y = 10 are shown on figure 6 .  When C+O the profile tends to a 
constant slope. 

Equations (2 .34a-c)  can be put in the general form 

+ E(A'A(E+~AA~)  = A,, (2 .37)  

where 8 = f 1 and y is either positive or negative. Equation (2.37) describes the 
coupling between modes of same parity, for instance 

A=XA,cos+n[ or A=ZB,sinnn[. 

The numerical results shown on figures 4 (a ,  b )  can be viewed as the superposition of 
the two lowest even modes: 

A = A, cos $6 + A,  cos in[, 

A,  and A, being of opposite sign. More than two modes are necessary to fit the results 
of figure 6. 

We have shown in this section that owing to the symmetry of the horizontal modes, 
the nonlinear terms in the equation for the vertical amplitude A ( 2 )  are either 
quadratic or cubic, and the corresponding solutions are respectively asymmetrical 
or symmetrical about 2 = 0. The same distinction between symmetrical and asym- 

n n 
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c = 9.9 

0 1 2 3 
c 

c 
FIQURE 4. Numerical solutions of Att+A+AaAtt+pAA! = 0 with A = 0 at 5 = f84: 

(a )  ,U = 0.5; ( b )  ,U = -0.4. 

metrical solutions also arises in the field of nonlinear convection between Doorlv 
I d 

conducting boundary, where Chapman & Proctor (1980) have derived an equation 
of the form 

A,,+A-A3+aAA5 = 0, (2.38) 

which, except for the cubic term, is identical with (2.17) for a = 1 .  When a = 0 the 
solutions of (2.38) are symmetrical and (2.38) can be solved in term of elliptic 
functions, whereas for a + 0 the solutions are asymmetrical. 

We shall see in $3 how to transpose the results of this section to the case of a vertical 
circular cylinder. 
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I I I I I 

5 10 15 20 
6 

FIQURE 5. The maximum amplitude as a function of 8: (a) ,u = 0.5; ( b )  ,u = -0.4. 

t 
FIGURE 6. Numerical solutions of A E E + A - A 2 A E E - p A A ~  = 0 with A = 0 at E = 584. 

Solutions are possible for < 8; < pi. 

3. The vertical circular cylinder 

of 1 ) :  

In a cylindrical geometry it is convenient to deal with the following representation 

u = V x *e i- V x V x #e, (3.1) 

and to replace the set of equations (2.1) by 

(Pr-l a, - A) A2 * = Pr-l NF) ,  

(Pr-' a, - A) AA2 # + A, 0 = - Pr-l N(b )  v ,  

(3 .2a)  

(3.2b) 

(a,-A)e = -RaA2q5-(u*V)e,  ( 3 . 2 ~ )  
with 
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and where NtpC) and N:6) stand for the nonlinear terms coming from (u*V)  u :  

N P )  = e * ( V  x (0 -V)  v ) ,  = e * ( V  x V x (U'V)  v ) .  

The change of variable z = A2 is made, together with the decomposition of all the 
physical quantities into two contributions : 

f = f ( O ) + , f ,  (3.3) 

where the quadrivector notation f = ($, $ ,8 ,  Ra) has been used. In  (3.3) f (O) stands 
for the Ostroumov solutions and it is assumed that the perturbations can be expanded 
in inverse powers of A. For an infinite cylinder (h+co) the time-independent 
equations reduce to A2@O) = 0, (3.4a) 

with 
(3.4b) 

(3.4c) 

The rigid boundary conditions associated with ( 3 . 4 ~ )  a t  r = 1 are $(O) = a,$(o) = 0,  
so that +(O) is identically null. The solutions for the vertical component of the velocity 
and the temperature divide in two classes following the thermal boundary condition 
and the angular mode. 

(i) Conducting lateral boundary and n =k 0 :  

v(0) = A einPJn(kr), 8(O) = Ak2 e'"TJ,(kr), (3.5a, b) 

J,(k) = 0. (3.5c) with 

(ii) Insulating lateral boundary or n = 0:  

with 
( 3 . 6 ~ )  

where J, and I ,  are respectively the nth Bessel and modified Bessel functions of the 
first kind. The values of k satisfying ( 3 . 5 ~ )  and ( 3 . 6 ~ )  are given in Gershuni & 
Zukhovitskii (1972). To simplify the notations it will be useful to introduce two 
functions of the radial variable : 

In the above notation the integer n characterizes the angular mode of flow; for 
example, n = 0 corresponds to the axisymmetrical mode and n = 1 to the first 
diametrically antisymmetrical mode. We begin by investigating the axisymmetrical 
mode, for which the components of the convective velocity are given by 

with 

It must be noticed that for n = 0 the solutions of (3.4) are the same for either type 
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of thermal boundary condition, and are given by (3.6a, b) .  When the expansions (3 .3)  
are substituted into (3 .2) ,  one gets for the perturbed velocity 

[A: - RdO)] Gz = - a, O(O)  - No + 3D,28(0)h-2 + Ra vp), (3 .8a)  

No = A- 'k2AAZ[ 1 F$')'I2 + fl!f)FcO)], (3.8b) 
with 

where the prime denotes derivative with respect to r and the limit Pr+ 00 has been 
taken. The solvability condition for ( 3 . 8 ~ )  takes a form analogous to (2.12) : 

kl 

with 

w 
3h-2AZZIl+RaIzA+h-113AAZ = I IA , ,  

I3 = - k2 jol F$')[IF$')'I2 + F$')fl?"]r dr. 

After integrating by parts, one can show that I3 takes a simple form 

(3.9) 

( 3 . 1 0 ~ )  

(3.10 b )  

( 3 . 1 0 ~ )  

which has been calculated numerically for the lowest radial mode, k: = 4.61 1 ,  and is 

I3 = -0.6029. 

All the parameters can then be eliminated in (3 .9) ,  leading to the equation (2.17) 
derived in $2 for the case of even modes between vertical parallel plates. 

The situation is quite different for the case of the diametrically antisymmetrical 
modes, n 2 1, for which one allows A to be a complex function: 

A = lAleia, 

where both IAl and the phase a are slowly varying functions of the vertical coordinate. 
Then the physical quantities, for instance the convective velocity, are now of the form 

w, = (Aei"P+ A* e-inP) w(r ) .  (3.11) 

As a consequence, the nonlinearities in the equation for the perturbed quantities 6, 
$ and & are either independent of p, or are of the form efzinT, so that the 
orthogonality relations with the adjoint solutions of (3 .9)  are automatically satisfied, 
with the result that I3 = 0. The method used to obtain the nonlinear equation satisfied 
by A closely follows the one described in $ 2  for the case of odd modes between vertical 
parallel plates. The main difficulty specific to the circular geometry comes from the 
fact that there are no multiplication rules for the Bessel functions as there are for 
trigonometric or hyperbolic functions. When the perturbed quantities are expanded 
in powers of A - l ,  for example 

4 = pp+p/p+ ... 

and analogous expansions for @, 6 and %, The quantJities $ ( t ) ,  . . . , with i 2 1 ,  cannot 
be determined analytically, and approximate methods must be used. Our starting 
point will be Ostroumov approximation, to which we superimpose a vertical 



236 C. Normand 

modulation together with allowing a phase shift along the vertical axis of the cylinder, 
so that the fundamental quantities take the form 

@O) = k2( A e'nV + A* e-i W )  Fy) (k r ) ,  ( 3 . 1 2 ~ )  

up) = (A einp + A * e-inp) FLn) (kr). (3.12 b)  

Contrary to what happens when n = 0, the vertical vorticity A,$, which is null in 
the Ostroumov approximation, does not remain null at higher orders in the A-' power 
expansion. The first-order solutions satisfy 

A: $(l) = 0, (3.13) 

and the boundary conditions associated with the rigid case, v,. = up, = 0 a t  r = 1, 
provide the boundary condition for $(l): 

1 a$-cu ---I a24(0 )  

azar ' 
(3.14) 

This leads us to  seek solutions of (3.13) of the form 

@l) = i(Azein'J'-Age-in'J') (Clrn + C 2 F 2 ) ,  (3.15) 

where the constant real coefficients C, and C, take the following values: 
(i) insulating case 

n 
2k2 

c,=-c =--JY +"' ( k ) ; (3.16a) 

(ii) conducting case 

(3.16b) 

We now have all the elements necessary to  calculate the nonlinear terms to first order 
in A - l :  

which is of the form 

This suggests that  we seek the solutions of 

[A: - &(O)] = - NCl) 
in the form 

(3.18) 

v(1) = ( A A  Z e2inp+A*A*e-2inp Z ) w(l,2)+(AzA*+A$A)W(1,0),  (3.19) 

and w(l* O) can be determined by the Galerkin method, where the radial functions w(l. 
the trial functions being the eigenfunctions of the linear problem, so that 

( 3 . 1 9 ~ )  

(3.19 b )  
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I' I" - 

with 
Illz) = [kt-Ra(0)]-l[jol N(1 ,2)Fyn)(k ir )  rdr  FPn)F(zn)rdr 

and 
Ill0) = [kf-Ra(o)]-l[jol N(lvo)Ff')(kir) rdr][S,' Fy)FF)rdr]-l, 

where the functions F+ are defined in (3 .7) .  In a similar way we introduce also 0(13z) 
and 6(1,0), since 

$(2) = i[(AA,), e2'V- (AzA*) ,  e-2"V]$(2~z)(r). (3.20) 

admits the same decomposition as up). We also deduce that 

The contribution $ ( 2 , 0 )  independent of Q, is of the form 

1' $(z,O)  = B rZ+B 

which only contributes to v;,O) = i3$(2,0)/ar = 2B0r, and owing to the rigid boundary 
condition on the sidewalls it turns out that B, = 0, so that $ ( z , o )  disappears from the 
calculation. Then the nonlinear terms at  order can be calculated, and the 
solvability condition for the equation satisfied by up) takes the form 

A,, + A +PO AI A I& + P1 A,IA It + P2 AIA,l2 + P3 A * (AA,), = A,, (3.21) 

where ,uo = +_ 1 and the explicit form of the pi coefficients ( i  > 1 )  is given in 
Appendix B. The boundary conditions are 

A = O  a t  E =  fa:. 
When there is a constant phase along the vertical axis, so that A is real, (3.21) reduces 
to (2 .37) .  Since no variational formulation exists for (3 .21) ,  solutions like A(V-wt) 
with a phase rotating at  the frequency w cannot be excluded. Let us examine the 
case for which the complex equation (3 .21)  separates into two real equations by 
writing 

We obtain 

W - U Z W +  ~ + ( 2 , ~ ~ + 2 , ~ ~ + p ~ + p ~ )  W W 2 + ( 2 p 0 + p 3 )  W 2 W + + 2 W ( ~ 2 - 2 p 3 )  = o 
(3.22 u) 

a w + 2 a W + 2 p 1 a w 2 W + p 3  w(4aww++oi.w2) = w w ,  (3.228)  
and 

where a dot means differentiation with respect to E .  Multiplying (3.22b) by W and 
integrating by parts over 5 from -8; to +& gives 

Cd 

= 2P1 [j-d a W Wdz] [ [ h  -84 w2 dz]'. 

Consequently w = 0 if either pl = 0 or if the phase is constant along the vertical axis 
(a = 0). The spatial variation of the phase induces modification of the convective flow 
pattern. This point is illustrated on figure 7 ,  where we have represented a diametrically 
antisymmetrical mode with a constant phase (a )  and with an arbitrary variation of 
the phase. There is experimental evidence for helical convective patterns bearing some 
analogy with figure 7 and associated with an oscillatory behaviour in solidification 
processes (Azouni 1977). It has been reported to me that in the field of photochemical 
reactions, convective patterns in the form of a figure of eight have been observed in 
high-evaporation-rate cooling cells (figure 3 d ) ,  giving evidence of non-constant-phase 
solutions. Simplifications occur in the resolution of (3 .22a,  b )  when degenerate cases 
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(a ) (6 ) 

FIGURE 7 .  Schematic representation of a diametrically antisymmetrical mode in a cylinder. (a) With 
constant phase along the axis: the vertical nodal plane which divides the cylinder in zones of 
respectively downward and upward flow is represented. ( 6 )  Example of an arbitrary helical 
variation of the phase: the nodal plane is now twisted. 

are considered. Let, for instance, pL1 = p2 = 0. Then multiplying (3.223) by W and 

(3.23) 
integrating gives 

ci( W2+p3 W4) = H .  

Using (3.23), then multiplying ( 3 . 2 2 ~ )  by l$' and integrating, we obtain 

where H and E are the constants of integration. Therefore W is given by inversion 
of the expression 

(3.24) 

It can be shown that (3.24) reduces to an elliptic integral of the second kind when 
pa = 0. Unfortunately, when all these simplifications are made we must take H = 0 
in (3.23) to prevent divergence of the phase at the boundaries, and the corresponding 
solutions are those with a constant phase. The possibility of steady solutions with a 
non-constant phase along the axis of the cylinder cannot be ruled out, however, and 
is presently under investigation. 

4. Conclusion 
The Ostroumov solution for convection in infinitely long vertical channels does not 

allow the generation of nonlinear terms in a Landau-type expansion. When the 
endwalls a t  the top and the bottom are taken into account, so that the nonlinear terms 
cannot be discarded in the equations, the solutions of the convective problem are in 
general obtained by numerical methods. Focusing on non-axisymmetrical modes in 
vertical cylinders of moderate aspect ratio, Rosenblat (1982) derived nonlinear 
evolution equations of the Landau type. His method, which consists of expanding 
the field quantities in series of eigenfunctions of the linear stability problem, has also 
been used by Lyubimov, Putin & Chernatynskii (1979) in the case of a Hele-Shew 
cell. The present contribution differs from these previous works in that the spatial 
variation as well as the time evolution of the amplitude are taken into account. In 
vertical channels the vertical amplitude is held constant when the assumption of an 
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infinite height is made, while it is considered as a slowly varying function of the 
vertical coordinate as well as time when the height is finite. The disparity between 
horizontal and vertical length-scales has been exploited to develop an expansion 
scheme in powers of the small radius-to-height ratio. Our calculations give the result 
that the nonlinear terms in the differential equation satisfied by the amplitude A are 
either cubic or quadratic in A ,  depending on the symmetry of the horizontal spatial 
mode of flow. Moreover, these nonlinear terms contain derivatives with respect to 
2, contrary to what happens for the case of horizontal structures. These equations 
have been solved numerically in the steady state, showing that the vertical structure 
of the convective flow in the weakly nonlinear regime is asymmetrical about 2 = 0 
when quadratic terms are present, and symmetrical when the nonlinear terms are 
cubic. Few experimental data in high vertical cells with vertical temperature gradient 
are available for comparison with our results. We should mention the work of Olson 
& Rosenberger (1979) in vertical cylinders with h = 6R, where there is evidence for 
an asymmetrical mode of flow (figure 3c) due to a mode-mode coupling and similar 
to what we get in solving (2.17). 

The existence of two kinds of nonlinearities in the amplitude equation owing to 
the symmetry of the horizontal modes bears some analogy with the existence of two 
convective patterns, rolls or hexagons, in horizontal fluid layers. In the latter case 
Palm (1960) has shown that the breaking of the vertical symmetry is responsible for 
the formation of hexagonal cells. 

Although the Prandtl-number dependence only appears in the case of a plane 
vertical layer, it seems likely that the essential features of the problem are contained 
in (2.17) and (3.21). Recent contributions (Siggia & Zippelius 1981) have emphasized 
the non-trivial role of a finite Prandtl number when horizontal layers of fluid are 
considered. In that case a finite Prandtl number is necessary to allow the generation 
of vertical vorticity. The situation is different in a cylindrical geometry, since vertical 
vorticity is always present even in the limit Pr+m (equation (3.15)). The finite- 
Prandtl-number effect is a change of the numerical values of the pi coefficients in 
(3.21). As suggested by experimental findings (Olson & Rosenberger 1979), it is 
expected that a finite Prandtl number will change the threshold for the onset of 
oscillatory instability, but this problem is well beyond the scope of the present 
analysis. 

In  conclusion, the existence of amplitude equations for vertical channels gives some 
hope of answering the following questions for the specific case of circular cylinders. 

(i) Are there stationary solutions with no constant phase? The difficulty lies in the 
treatment of the boundary layers. 

(ii) Are the solutions with a constant phase stable for disturbances having a 
rotating phase ?r 

The author acknowledges with gratitude many discussions with Y. Pomeau during 
the course of this work. 

Appendix A. Derivation of the boundary conditions for A 
We follow closely the derivation given by Brown & Stewartson (1977) for the 

case of a horizontal layer of fluid. In  the neighbourhood of a horizontal boundary 
the adjustment to the mechanical and thermal conditions is taking place rapidly, so 
that the assumption of a small A-l aAl3.z is no longer valid. Then the nonlinear terms 
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in (2.1) can be neglected near the threshold of the instability, and the equation to 
be solved in the boundary layer is 

[ (a;+i3;)3-Raa;]~,  = 0. (A 1 )  

A further simplification is made by taking Ra = Ra(O), the relative error in so doing 
is O ( h P 2 ) .  For conducting sidewalls the odd modes are given by 

u, = w(z)  sin KZ, 
where w(z) satisfies 

whose general solution is 
(a; - 3 ~ 9 ;  + 3x4) az,w = 0, 

5 

W ( Z )  = C,+C,z+ X C2ep~xz, 
2-2 

and the pi are solutions of the algebraic equation 

p4-3p2+3 = 0. (A 5 )  

Near the wall z = - A  we need consider only those of the pi that contribute to an 
exponentially decaying solution for z - t  a. A complete solution for the boundary layer 
is 

u, = (C, + C,x+ C, epnz + C, ep*nz) sin XZ, 

u, = (C, +pnC2 epnz +,u*nC3~*nz) n-l cos nx, 

0 = [C,+C,z+C,(p2- l )2e~aZ+C,(p*2-1)2e~*nz]n2sinn~.  

(A 6 a )  

(A 6 b )  

(A 6c) 

The boundary conditions u, = vz = 0 = 0 at z = - A  leads to the following algebraic 
system for the coefficients : 

C, = C,-C,h, C,, C, = C2epnA, C3 = C3ep*xA. 

After dropping the overbars we get 

(A 7 )  1 co+c,+c3 = 0, 

c,+pnc,+p*nc, = 0, 

C2p2(p2- 2) + C3p*2(p*2- 2) = 0. 

We have three equations connecting four constants C,, and the remaining condition 
must come from matching (A 6) as z+ co, with the expansion of A near 2 = - A  

A(2) = A( - A )  + h -%A'( - A )  + . . . , (A 8) 

where A' denotes ha,A and is O(A).  After eliminating "z and C, in (A 7) ,  one gets 
a linear relation between C, and C, 

C, = nCo[Rep++31mp]. (A 9) 
The matching of (A 8) with (A 6 a )  shows that C, is of relative order A - l ,  and so we 
may set C, = 0 in (A 9) as a first approximation. Hence the appropriate boundary 
condition on A is A = 0. 

In the case of a vertical cylinder the equations to be solved are 

with 

(A3-RaA2)A,# = 0, 

AA2@ = 0, 

e = ~ 2 4 .  



Nonlinear convection in high vertical channels 

Near a horizontal wall we seek the solutions of (A 10) in the form 

4 = J , ( W f ( Z )  COB v, 
+ = (alra+a2rn+2)g(z)sinv. 
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The boundary conditions 
v ,=v  = O  at r = 1  P 

will be easily satisfied by assuming g(z) = df/dz. Then f ( z )  satisfies an equation 
analogous to (A 3 ) :  

with the conditions 
(d: - 3k2 d,2 + 3k4) d,2 f = 0, 

f =  d,f= (d,2-k2)2f = 0 at z = 0. 

From now the calculations are exactly the same as those for a plane vertical layer 
and will not be repeated here. 

Appendix B. Calculation of the ,uc coefficients which appear in front of the 
nonlinear terms in the complex amplitude equation for the non-axisym- 
metrical modes in cylinders 

Our starting point is the solvability condition at order A - 2  : 

311AZz+Ra(2)12A+ I3A[(AZA*) ,+  (AfA),]+14A,(A*A,+A$A) 

+I5AAZAz+IeA*(AAZ)z = 0 ,  (B 1)  

where the I ,  (rn = 1, ... ,6)  are integrals over the r-variable with Il  and I2 already 
defined in (3.10u, b) .  For rn 2 3 they are given by the following expressions: 

We dimensionalize as follows : 

After dropping the overbar, (B 1 )  takes the form (3.21), where 

Expressions (B 2a-d) are valid when the Prandtl number is infinite. When this is not 
the case, the I ,  depend upon the Prandtl number. 
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